Self-consistent simulations of particle beam/plasma interaction with its environment

Jean-Luc Vay

Heavy Ion Fusion Science Virtual National Laboratory Lawrence Berkeley National Laboratory

DOE OFES Theory Seminar Series

June 5, 2007

Collaborators

- M. A. Furman, C. M. Celata, P. A. Seidl, K. Sonnad Lawrence Berkeley National Laboratory
- R. H. Cohen, A. Friedman, D. P. Grote, M. Kireeff Covo, A. W. Molvik, W. M. Sharp *Lawrence Livermore National Laboratory*
- P. H. Stoltz, S. Veitzer Tech-X Corporation
- J. P. Verboncoeur

 University of California Berkeley

Outline

Context

Simulation tools

Benchmarking against experiments

Application to high energy physics

Summary

Context

Today's HIFS program is directed at beam & Warm Dense Matter physics in the near term, and IFE in the longer term

Heavy Ion Fusion Science experiments:

The physics of compressing beams in space and time

- -- Drift compression and final focus
- -- High brightness beam preservation
 - -- Electron cloud, beam halo, non-linear processes

Warm Dense Matter (WDM) experiments

- -- Equation of state
- -- Two-phase regime and droplet formation
- -- Insulator and metals at WDM conditions

Hydrodynamics experiments relevant to HIF targets

-- Hydrodynamic stability, volumetric ion energy deposition, and Rayleigh-Taylor mitigation techniques

It is highly desirable to minimize the space between the beam and the accelerating structure.

The Heavy Ion Fusion Science Virtual National Laboratory

Sources of electron clouds

Primary:

- Ionization of
 - background gas
- desorbed gas
- ion induced emission from
 - expelled ions hitting vacuum wall
 - beam halo scraping
- photo-emission from synchrotron radiation (HEP)

Secondary:

secondary emission from electron-wall collisions

Simulation goal - predictive capability

Source-through-target **self-consistent** time-dependent 3-D simulations of beam, electrons and gas with self-field + external field (dipole, quadrupole, ...).

Simulation tools

WARP is our main tool

3-D accelerator PIC code

Geometry: 3D, (x,y), or (r,z)

Field solvers: FFT, capacity matrix, multigrid

Boundaries: "cut-cell" --- no restriction to "Legos"

Bends: "warped" coordinates; no "reference orbit"

Lattice: general; takes MAD input

- solenoids, dipoles, quads, sextupoles, ...

- arbitrary fields, acceleration

Diagnostics: Extensive snapshots and histories

Parallel: MPI

Python and Fortran: "steerable," input decks are programs

WARP-POSINST has unique features

merge of WARP & POSINST +

new e-/gas modules

POSINST provides advanced SEY model.

Monte-Carlo generation of electrons with energy and angular dependence.

Three components of emitted electrons:

backscattered: $\delta_e = \frac{I_e}{I_o}$,

rediffused: $\delta_r = \frac{I_r}{I_0},$ true secondaries: $\delta_{ts} = \frac{I_{ts}}{I_0}$

Phenomenological model:

- based as much as possible on data for δ and $d\delta/dE$
- not unique (use simplest assumptions whenever data is not available)
- many adjustable parameters, fixed by fitting δ and $d\delta/dE$ to data

We have benefited greatly from collaborations

• ion-induced electron emission and cross-sections from the TxPhysics* module from Tech-X corporation (http://www.txcorp.com/technologies/TxPhysics),

ion-induced neutral emission developed by J. Verboncoeur (UC-Berkeley).

Benchmarking against experiments

Benchmarked against dedicated experiment on HCX

Short experiment => need to deliberately amplify electron effects: let beam hit end-plate to generate copious electrons which propagate upstream.

Comparison sim/exp: clearing electrodes and e⁻ supp. on/off

Detailed exploration of dynamics of electrons in quadrupole

Quest - nature of oscillations

Progressively removes possible mechanisms

Not ion-electron two stream

Other mechanisms:

5e+06

V(m/s)

- Virtual cathode oscillations
- δ -Density $\Rightarrow \delta$ -potential, feedbacks to drift velocity
- Kelvin Helmholtz/Diocotron (plausible, shear in drift velocities)

Fluid velocity vectors (length and color according to magnitude)

Application to high energy physics

HEP e-cloud work currently uses "quasi-static" approximation

A 2-D slab of electrons (macroparticles) is stepped backward (with small time steps) through the beam field and 2-D electron fields are stacked in a 3-D array, that is used to push the 3-D beam ions (with large time steps) using maps (as in HEADTAIL-CERN) or Leap-Frog (as in QUICKPIC-UCLA), allowing direct comparison.

Quasi-static mode (QSM) has been added to WARP

Rationale

- we had the building blocks
- we need to reproduce HEP codes results for meaningful comparisons

Comparison WARP-QSM/HEADTAIL on CERN benchmark

Proposed Model for Instability Simulations

round bunch in a round pipe: 1e11 protons uniform electron cloud with density 1e12 m^-3 each bunch passage starts with a uniform cloud chamber radius 2 cm uniform transverse focusing for beam propagation zero chromaticity, zero energy spread no synchotron motion energy 20 GeV beta function 100 m ring circumference 5 km betatron tunes 26.19, 26.24 rms transverse beam sizes 2 mm (Gaussian profile) rms bunch length 30 cm (Gaussian profile, truncated at +/- 2 sigma_z) no magnetic field for electron motion elastic reflection of electrons when they hit the wall

NEW: with open and/or conducting boundary conditions (please specify boundary assumed), with 1 and/or several interaction points per turn or continuous interaction (please specify)

1 station/turn 2.0 Emittances X/Y (π-mm-mrad) 1.5 1.0 WARP-QSM X.Y 0.5 **HEADTAIL X.Y** 0.0 Time (ms) 2 stations/turn 1.0 Emittances X/Y $(\pi$ -mm-mrad) 0.5 WARP-QSM X,Y HEADTAIL X,Y 0.0 0 4 Time (ms)

result: plot of x&v emittances vs time

WARP/POSINST applied to High-Energy Physics

 LARP funding: simulation of e-cloud in LHC Proof of principle simulation:

- Fermilab: study of e-cloud in MI upgrade (K. Sonnad)
- ILC: study of e-cloud in positron damping ring wigglers (C. Celata)

How can FSC compete with QS? Recent key observation: range of space and time scales is not a Lorentz invariant*

same event (two objects crossing) in two frames

Consequences

- there exists an optimum frame which minimizes ranges,
- for first-principle simulations (PIC), $\cot T/\delta t \sim \gamma^2$ ($\propto L/l^*T/\delta t \sim \gamma^4$ w/o moving window),

for large γ , potential savings are HUGE!

*J.-L. Vay, PRL 98, 130405 (2007)

A few systems which might benefit include...

In laboratory frame.

longitudinal scale x1000/x1000000...

... so-called "multiscale" problems
= very challenging to model!
Use of approximations
(quasi-static, eikonal, ...).

Lorentz transformation => large level of compaction of scales

Boosted frame calculation sample proton bunch through a given e⁻ cloud*

This is a proof-ofprinciple computation: hose instability of a proton bunch

Proton energy: γ=500 in Lab

• L= 5 km, continuous focusing

CPU time:

- lab frame: >2 weeks
- frame with $\gamma^2=512$: <30 min

Speedup x1000

*J.-L. Vay, PRL 98, 130405 (2007)

The Heavy Ion Fusion Science Virtual National Laboratory

Summary

- WARP/POSINST code suite developed for HIF e-cloud studies
 - Parallel 3-D AMR-PIC code with accelerator lattice follows beam <u>self-consistently</u> with gas/electron generation and evolution,
- Benchmarked against HCX
 - highly instrumented section dedicated to e-cloud studies,
- Being applied outside HIF/HEDP, to HEP accelerators
 - found that cost of self-consistent calculation is greatly reduced in <u>Lorentz boosted frame (with γ>>1)</u>, thanks to relativistic contraction/dilatation bridging space/time scales disparities,
 - 1000x speedup demonstrated on proof-of-principle case,
 - will apply to LHC, Fermilab MI, ILC.

